
Accelerated Simulation of the XY Model
using Conditional Normalizing Flows

A thesis submitted in fulfilment of the requirements

for the degree of Master of Technology

by

Jaivardhan Kapoor

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

January 2021

http://home.iitk.ac.in/~jkapoor
Department%20or%20School%20Web%20Site%20URL%20Here%20(include%20http://www.iitk.ac.in/ee)
University%20Web%20Site%20URL%20Here%20(include%20http://www.iitk.ac.in)

Declaration

This is to certify that the thesis titled ”Accelerated Simulation of the XY Model using Con-

ditional Normalizing Flows” has been authored by me. It presents the research conducted

by me under the supervision of Professor Vipul Arora. To the best of my knowledge, it

is an original work, both in terms of research content and narrative, and has not been

submitted elsewhere, in part or in full, for a degree. Further, due credit has been attributed

to the relevant state-of-the-art and collaborations (if any) with appropriate citations and

acknowledgements, in line with established norms and practices.

Signature

Name: Jaivardhan Kapoor

Programme: BT-MT

Department of Electrical Engineering

Indian Institute of Technology Kanpur

Kanpur – 208016

iii

Department%20or%20School%20Web%20Site%20URL%20Here%20(include%20http://www.iitk.ac.in/ee)
http://www.iitk.ac.in

Abstract

Name of the student: Jaivardhan Kapoor Roll No: 15807300

Degree for which submitted: M.Tech. Department: Electrical Engineering

Thesis title: Accelerated Simulation of the XY Model using Conditional

Normalizing Flows

Thesis supervisor: Vipul Arora

Month and year of thesis submission: January 2021

Statistical Physics often requires computational simulations to study models. Simulating the

XY model, a lattice model in Statistical Physics is performed by Markov Chain Monte Carlo.

This method, although asymptotically exact, is resource and time-consuming. Recently,

Normalizing flows, a class of probabilistic deep generative models in Machine Learning,

have enjoyed success in simulating lattice models in both classical and quantum Physics.

In this thesis, we present a novel normalizing flow architecture that allows us to simulate

lattices for the XY model. The proposed model can be conditioned on the temperature

of the system, and hence can simulate lattices for a range of temperatures. The model is

trained using Forward and Reverse KL objectives, therefore can be trained with or without

pre-existing simulated data. Furthermore, the fully convolutional neural networks used in

our model allow us to employ transfer learning to learn larger lattices by fine-tuning models

for smaller lattices.

We quantitatively and qualitatively analyze the performance of the proposed model and

compare it to recent works that also use deep generative models to simulate the XY model.

We find that in computing physical observables, our model performs better than or on-par

with recent works that also use deep generative models to simulate the XY model. We also

v

observe that due to the global continuous symmetry and topological phase transitions in

the XY model, learning to simulate it is a hard problem. We show qualitatively that our

model can transfer-learn larger lattice sizes and performs better than competing methods.

Finally, we propose some possible future extensions to our method to better simulate such

lattice models.

Acknowledgements

Throughout writing this thesis, I have received a great deal of help and support from my
colleagues, friends, and family.

I would start by thanking my supervisor Dr. Vipul Arora for his constant support and
immense patience. There have been times where I did not have confidence in myself, and
Vipul Sir always led me to believe I could do it. I am grateful for the stimulating discussions
with him, and his oft-accurate criticisms of my work.

I would also like to thank my fellow peers Vinay Kumar Verma, Japneet Singh, and Vikas
Kanaujia for their help and collaboration in this project. Besides, I extend my thanks to
Gurtej Kanwar, MIT for his helpful insights during our discussions.

My friends, who I consider my family in my stay at IIT Kanpur, have always been at my
side, lifting my spirits and staying supportive in this endeavor. Thanks to Swapnil, Shivang,
Krishan, Shivam, Dhirendra, and Nishkarsh. Apologies to all those whose name I did not
write but am equally grateful towards.

Finally, I am forever indebted to my family for supporting me always from behind the
curtains. Thanks to my sister Ritika for providing encouraging words exactly when I needed
them. My parents Anu and Rajesh Kapoor have always believed in me, and during the
pandemic lockdown never let me fall into a slump. This is for you.

vi

Contents

Acknowledgements vi

List of Figures ix

List of Tables x

1 Introduction 1

2 Classical Spin Models: The XY Model 4
2.1 XY Lattice and its Hamiltonian . 4
2.2 Markov Chain Monte Carlo - Simulating the XY model 5
2.3 Observables in the XY model . 7
2.4 The Berezinskii–Kosterlitz–Thouless (BKT) Transition 8
2.5 Symmetries in the XY model . 9

3 Normalizing Flows 11
3.1 Introduction . 11
3.2 Transformation of Random Variables . 11

3.2.1 Composing Multiple Transformations 12
3.3 Learning Normalizing Flows . 14

3.3.1 Forward KL Divergence . 14
3.3.2 Reverse KL Divergence . 15

3.4 Normalizing Flows for Circular Variables . 17
3.4.1 Circular Splines . 18

3.5 Coupling-based Architecture for Multivariate Normalizing Flows 19

4 Related Work and Baselines 23
4.1 Using Tractable likelihood Models for Learning Physics 23
4.2 Machine Learning approaches applied to the XY model 24
4.3 Baselines . 24

4.3.1 HG-VAE ([10]) . 24

vii

Contents viii

4.3.2 ImplicitGAN ([47]) . 25

5 Proposed Model – Conditional Coupling-Circular Spline Flow 27
5.1 The Model . 27
5.2 Training using Forward KL Divergence . 29

5.2.1 Magnetization Normalization of the Training Data 30
5.3 Training using Reverse KL Divergence . 31

6 Experiments 33
6.1 Metrics . 33

6.1.1 Earth Mover Distance (EMD) . 33
6.1.2 Percent Overlap (%OL) . 34
6.1.3 L2 error . 34

6.2 Experiment Setting . 35
6.2.1 MCMC Simulation hyperparameters 35
6.2.2 Flow Settings . 37

6.2.2.1 Training and Evaluation . 37
6.3 Observations . 37

6.3.1 Training the Flow with Forward KL 37
6.3.2 Training the Flow with Reverse KL 38
6.3.3 Comments on Performance . 38

6.4 Transfer Learning for Larger Lattices –
A Qualitative Analysis . 41

7 Conclusion and Future Work 44

Bibliography 46

List of Figures

2.1 Vortices and anti-vortices . 8
2.2 Observables for L = 8 and L = 16. Shaded areas show ±1 standard deviation

from mean. 9

3.1 Testing CSF compositions on a 1D toy problem. Top left: the target density
is a mixture of 4 von Mises distributions. Top right: bijections learned by
the flow. Bottom left: Flow density optimized using Reverse KL, with an
effective sample size (ESS) of 99.86%. Bottom right: Flow density optimized
using Forward KL with an ESS of 99.61%. Flow is composed of 10 CSFs
with K = 5 pieces each. 20

3.2 Jacobian structures for Autoregressive and Coupling Flow architectures. In
both cases, simply multiplying the diagonal values of the Jacobian gives us
the determinant in O(D) time. 21

3.3 Learning a toy problem p⇤(x) / exp{4 cos(x1 � x2)}. Left: real density.
Right: flow learned density with an ESS of 98.4%. Flow consists of 8
transformations and uses a single hidden-layer Feedforward Neural Net with
16 hidden units. Training done using Reverse KL divergence. 22

5.1 Forward and inverse conditional flow compositions 28
5.2 Architecture of Condtional Coupling Circular Spline Flow with checkerboard

mask . A successive flow with the alternate checkerboard mask
is composed to form a single CC-CSF. For the inverse flow, simply use the
inverse componentwise CSF f�1 instead of f 29

6.1 Observables for L = 8 and L = 16, computed using samples from a) MCMC,
b) HG-VAE, c) ImplicitGAN, and d) CC-CSF trained using Forward KL.
Susceptibility at low temperatures for HG-VAE was highly divergent, hence
omitted. 39

6.2 Observables for L = 8 and L = 16, computed using samples from a) MCMC,
b) HG-VAE, c) ImplicitGAN, and d) CC-CSF trained using Reverse KL.
Susceptibility at low temperatures for HG-VAE was highly divergent, hence
omitted. 40

6.3 Observables computed using samples from a) MCMC, b) CC-CSF transfer-
learned from L = 8 flow, b) ImplicitGAN trained on 32 ⇥ 32 lattice data
simulated using MH algorithm. Finetuning was done using Forward KL
objective. For both models, dataset used contains 10k samples for each
temperature. 43

ix

List of Tables

6.1 Evaluated metrics for baselines and flow models. For reverse KL CC-CSF,
↵ = 0.53 for L = 8 and ↵ = 0.55 for L = 16. Mean and max values are
computed over the range of temperature T 2 [0.025, 1.025], with 32 equally
spaced intervals. 36

x

Dedicated to my parents, Anu and Rajesh Kapoor

xi

Chapter 1

Introduction

In recent times, Machine Learning (ML) has seen countless applications in various domains,
owing to its ability to leverage pre-existing data and/or information about a problem to
accelerate and improve predictions and inferences. The Sciences, in particular, have seen
an explosion of applications of ML algorithms to augment and build upon traditional com-
putational approaches. In this thesis, we will present one such application of contemporary
ML techniques to accelerate a particular computational problem in Physics – simulating
the XY model.

The rise in popularity of applied Machine Learning is in large part due to the advent of
efficiently trainable Deep Neural Networks, which are central in the Deep Learning (DL)
paradigm. In DL, we construct sequentially-applied nonlinear transforms that transform
an input (images, waveforms, text, molecules, and much more) into the desired output,
which may be simple (a binary output showing whether the image is of a particular class or
not) or complex (a super-resolved version of the input image). Neural nets can be used
as black box transforms in many other ML algorithms, increasing their expressivity and
range of applications. This larger class of using Neural Nets with other ML algorithms falls
broadly within the realm of differential programming, which utilized gradient descent-type
algorithms to train these models.

ML algorithms, and their applications, can be broadly categorized into two different classes
– supervised ML and unsupervised ML. The former requires labeled data, for example,
the class of the image (whether it is of a cat, dog, car, and so on) with the image.
The latter on the other hand only works on data points and does not require explicitly
labeled data. Unsupervised ML is generally considered much more difficult, and a large
portion of unsupervised ML algorithms utilize probabilistic constructions of a model. A

1

Chapter 1. Introduction 2

probabilistic style of model construction considers the input, output, as well as parameters
and components of the model as random variables. Through probabilistic methods such as
Bayesian inference, these random variables are then inferred and once the model is fully
trained we can generate outputs from the model that is similar to the dataset we used. We
can also use marginalization and various other properties of such probabilistic models to
further analyze the problem.

A massive advantage of this probabilistic paradigm of unsupervised learning is that it
blends well with applications to sciences. Analysis of scientific data requires uncertainty
estimates along with point estimates to enable the practitioner to interpret the data. Since
probabilistic approaches have an easier time providing uncertainty estimates of inferred
properties and generated data, they are well-suited to problems in Physics, Chemistry,
Biology, Geology, Medicine, and many more.

In Physics, many physical models require computational simulations to study their properties
and investigate further. For example, in astrophysics, large scale simulations are run to map
the evolution of galaxies and star systems. In the study of statistical physics and condensed
matter Physics, microstates (individual molecules or units of matter) are simulated using
various techniques to study the macroscopic properties of the medium. As an example, the
Ising model [9] is a mathematical model containing up/down spins on a lattice (regularly
spaced grid). It is used to study ferromagnetism, as the arrangement of the spins causes a
net magnetization on different scales. The XY model [30] is a slightly more complex model
with angular spins on a lattice. This model has certain additional properties and observables
that are of interest to physicists. These lattice models are also found in Quantum Mechanics,
where they are used to study Lattice Field Theory (LFT). In our work, we will solely focus
on the XY model, which is a classical model of Statistical Physics.

Lattice models in more than a single dimension are usually intractable and cannot be studied
analytically, therefore we must simulate them. Usually, these models have a Hamiltonian
(or action in the case of LFT) that describes statistically the different possible microstates.
Thus they have a tractable probability density associated with each configuration of spins
in the lattice. We use statistical simulation methods such as Markov Chain Monte Carlo
(MCMC) [2] to generate these configurations and then compute the observables, such as
heat capacity, energy, magnetization, and so on.

MCMC is asymptotically correct but tends to be slow when the temperature of the system
is low, or the lattice is large, or the model is complex. On the other hand, machine learning
approaches allow us to use parallel processing hardware in the form of GPUs to quickly

Chapter 1. Introduction 3

generate samples. The challenge then lies in learning the physical model itself so that the
generative ML model can reproduce the macroscopic observables. Several works have been
published applying this concept to various lattice models [10, 32, 22, 16, 1, 24, 5, 21, 47].

In this work, we will exclusively look at accelerated simulation of the XY model. We will
be employing Normalizing Flows [43, 40, 44] to learn and generate the XY model, and the
model will be able to be conditioned on the temperature of the system. This model allows
us to directly model the circular spins on the lattice through a sequence of transformations
of random variables, which we can then use to generate new lattice configurations. Our
contributions are as follows:

1. we introduce a novel Temperature-conditioned Coupling-based Circular Spline Flow
model to learn and generate lattices for the XY model,

2. we introduce implicit and explicit regularization techniques to train the flow model,

3. we compare against state-of-the-art baselines and obtain competitive metrics, often
beating state-of-the-art, and finally

4. we test the transfer learning capabilities of our model to learn and generate larger
lattice sizes.

In Chapter 2 we will review the XY model, its properties, and how to simulate it. Chapter
3 provides an expository introduction to the theory of normalizing flows, their extension
for modeling circular data, and multivariate architectures for efficient implementation. We
then review some related work and baselines to compare our work against in Chapter 4.
In Chapter 5 we construct our flow model and introduce techniques to train it efficiently.
Finally, we evaluate the model’s performance and features and compare with baselines in
Chapter 6 and state our conclusions in Chapter 7.

Chapter 2

Classical Spin Models: The XY
Model

2.1 XY Lattice and its Hamiltonian

In a 2D XY model [30], we have a two-dimensional lattice of L⇥L particles , with positions
denoted by the tuple i, j. Each position in the lattice interacts with its nearest neighbors
through the spin values. The spin is itself characterized by an angle, x 2 (�⇡,⇡]. The
Hamiltonian (or the configuration energy) of the lattice in terms of the spins x = {xi,j} is
then characterized as

H(x) = �J
X

i,j

X

NN+(i,j)

cos
�
xi,j � xi0,j0

�
, (2.1)

where the outer sum is over all lattice positions and the inner sum over the nearest neighbors
of each position. NN+ contains the nearest neighbours of a lattice position in the positive
direction, so that each interaction is only counted once.

Since the lattice is finite dimensional, periodic boundary conditions are established in the
nearest neighbour interactions as is performed in mathematical simulations of physical
models. The Hamiltonian may be written as follows:

H(x) = �J
X

i2{1...L}
j2{1...L}

⇣
cos(xi,j � xi,j�1) + cos(xi,j � xi�1,j)

⌘
, where (2.2)

a� b = (a+ b)modL (2.3)

4

Chapter 2. Classical Spin Models: The XY Model 5

The modulus operators include the periodic boundary conditions.

The lattice x can take several configurations with the space of possible configurations in
[�⇡,⇡]L,L. Using a statistical mechanical perspective, the probability density of the lattice
existing in a given state can be written as a Boltzmann distribution:

p(x|T) = 1

Z(T)
exp

✓
�H(x)

kT

◆
(2.4)

where T is the temperature of the system, k is the Boltzmann constant, and Z(T) the
partition function given by normalizing the exponential term across all spin configurations.
The coupling constant J in the Hamiltonian in our case is taken to be 0.5k. Changing J is
equivalent to scaling the temperature T correspondingly. It is this probabilistic formulation
of the XY model that will allow us to simulate samples from it, and consequently, apply
Machine Learning techniques to simulate it.

2.2 Markov Chain Monte Carlo - Simulating the XY model

We simulate the XY model by drawing samples from its Boltzmann distribution. Once we
have samples, that correspond to high-probability configurations, we can then compute any
observed quantity of the XY model by Monte Carlo (MC) averaging.

Suppose we want to accurately compute an observable O at temperature T . the observable
will be different for different configurations, so usually we require an average over all
configurations. Its expectation is computed as hOi =

R
x
O(x) 1

Z(T) exp
⇣
�H(x)

kT

⌘
dx. Since

this integral is not tractable, we resort to MC averaging. Assuming we have exact samples
from the Boltzmann distribution, the MC estimate is computed as:

hOiMC =
1

N

X

x1...xN
xi⇠p(x)

O(xi) (2.5)

Due to samples being from the true distribution, the MC estimate is an unbiased estimate
of the true value. In the case of the XY model, however, even sampling from the Boltzmann
distribution is not possible, due to the unknown partition function Z(T). We can only
evaluate the unnormalized density given a configuration.

Markov Chain Monte Carlo (MCMC) allows us to precisely overcome this problem. MCMC
[2] is a general class of algorithms that allow us to asymptotically sample from an intractable

Chapter 2. Classical Spin Models: The XY Model 6

distribution. In simple terms, MCMC works by creating a Markov chain of samples, so that
the samples mimic the target probability distribution.

The Metropolis Hastings (MH) algorithm [8] is the most popular MCMC algorithm, and
indeed several popular MCMC methods can be reinterpreted as special cases of the MH
algorithm. We will be using the MH algorithm to generate samples of the XY model.

For an MCMC algorithm we require a proposal distribution (or more formally, the Markov
Transition Kernel). The proposal should be easy to sample from and evaluate, and of a
form such that we can comdition the distribution given a value x0. Let’s call the proposal
p̃(x|x0) and the target distribution p(x). The general recipe of the MH algorithm is:

1. Initialize the chain with the first sample x(1).

2. For i = 2 . . . N , generate the sample x(i) using the following steps.

(a) Given previous sample x(i�1), generate x̃(i) ⇠ p̃(x|x(i�1)).

(b) Compute acceptance probability

a = min

(
1,

p(x̃(i))p̃(x(i�1)|x̃(i))
p(x(i�1))p̃(x̃(i)|x(i�1))

)

Note that the unnormalized target density suffices to compute this.

(c) Set

x(i) =

8
<

:
x̃(i) w.p. a

x(i�1) w.p. 1� a

3. Return the chain {x(i) . . . x(N)}.

The XY model is simulated for a given temperature T by setting the target as the (unnor-
malized) Boltzmann distribution. We sample from the proposal by 1) sampling a lattice
position randomly, that is, u ⇠ Uniform(1 . . . L), v ⇠ Uniform(1 . . . L), and then 2) per-
turbing the spin at position (u, v) by sampling from a normal distribution N (x(i�1)

u,v ,�2)

(out of boundary values are taken modulo 2⇡.) The unnormalized proposal density for
acceptance probability computation is simply the Normal density. Because the proposal
distribution is symmetric, the proposal terms in the numerator and denominator cancel out
in the acceptance probability computation, leaving the target ratio.

Chapter 2. Classical Spin Models: The XY Model 7

Usually, we run the chain for a number of steps before collecting the samples. This is done
to allow the chain to settle in a high-probability region, thereby getting rid of transient
effects. This phase is called the warmup or burn-, also referred to as thermalization in
physics literature. Finally, for the XY model there exist sampling algorithms such as the
Wolff cluster algorithm [50], which perturb clusters of spins at once. Using our method, we
can in principle model and learn any similar lattice model with angular spins, therefore our
method is more universal in sampling lattices for custom densities.

2.3 Observables in the XY model

In this section, we list some of the observables of the XY model. These observables may
be considered as measurable macroscopic properties of the model, where the microscopic
quantities represent the individual spins in the lattice. We will usually compute the variance
and mean of these observables to compare in our experimental section. Each observable is
computed with the (unbiased) Monte Carlo estimate from the MCMC samples {x(i)}i=1...N

of the XY model. The observables are computed given a specific temperature of the system.

Mean Energy (E) - The mean energy of the XY model at temperature T is simply the
hamiltonian divided by the number of lattice points,

hE|T i = 1

N

X

i=1...N

1

L2
H(x(i)) (2.6)

As the temperature increases, the energy of the system also increases, as the spins start to
inhabit values farther away from neighboring sites, and drive the energy upward.

Mean Magnetization (M) - Magnetization is defined as

M(x) =

rP
u,v

cos2 xu,v +
P
u,v

sin2 xu,v

L
(2.7)

The mean magnetization is the average of magnetization over all samples.

hM |T i = 1

N

X

i=1...N

M(x(i)) (2.8)

Mean magnetization decreases with increase in temperature, as spins become unccorelated
with each other. For larger lattices, the drop in magnetization becomes steeper near the

Chapter 2. Classical Spin Models: The XY Model 8

(a) Vortex (b) Antivortex

Figure 2.1: Vortices and anti-vortices

critical temperature. It is essentially the magnitude of the average direction of magnetization
of spins of the lattice.

Mean Vorticity (V) - If we traverse a loop or clique of neighboring spins in clockwise
direction, we will encounter vortices or antivortices. Visually show in Figure 2.1, if we go
along the loop adding the changes in spin values modulo 2⇡, a total of less than �2⇡ results
in antivortices, while more than 2⇡ is a vortex. If the sum remains within these values,
there is no (anti)vortex present. Vortex-antivortex pairs may be encountered in neighboring
loops, and we shall later see that unbinding of these pairs occurs at a critical temperature,
leading to the Kosterlitz-Thouless transition.

Mean vorticity is the number of vortices in a lattice divided by the number of lattice sites.
The MC estimate mean and variance are computed in simulations.

Magnetic Susceptibility (�) - It is computed as the variance of the magnetization across
lattice samples.

� = Var(M) (2.9)

Magnetic susceptibility peaks at a temperature close to the transition temperature. For
progressively large lattice which approximate the continuum XY model, the peak gets
sharper.

All observables computed with the MH algorithm are shown in Figure 2.2.

2.4 The Berezinskii–Kosterlitz–Thouless (BKT) Transition

This section briefly describes a phenomenon special to the two-dimensional lattice of the
XY model. The BKT transition [30, 42] is a phase transition as a result of unbinding
of vortex-antivortex pairs at a critical temperature Tc. For coupling constant J = 0.5k,

Chapter 2. Classical Spin Models: The XY Model 9

(a) Mean Energy (b) Mean Magnetization

(c) Mean Vorticity (d) Magnetic Susceptibility

Figure 2.2: Observables for L = 8 and L = 16. Shaded areas show ±1 standard deviation
from mean.

Tc ⇡ 0.45. Near Tc, called the critical region, simulation of the XY model is harder than it
is at lower or higher temperatures. This transition is first-order, resulting in divergence
of magnetic susceptibility and other similar order parameters at the transition. The BKT
transition is specific to the XY model, although some other statistical physics models may
exhibit similar phase transitions. This transition makes it significantly harder to learn the
XY model, compared to models that have a smoothly changing higher-order parameter with
temperature. Later in the experimental section of this work, we will look at extrapolation
analyses to see if our model correctly simulates the model in the critical region.

2.5 Symmetries in the XY model

The XY model has U(1) symmetry, that is, if we rotate each spin in the lattice by a constant
angle, the resulting configuration will be equivalent to the original one. To see this, recall
that the XY model is characterized by its Hamiltonian. To a configuration x = {xi,j}, we
add a constant angle x0 2 [�⇡,⇡], such that the new condfiguration x0 = {xi,j �x0}, where

Chapter 2. Classical Spin Models: The XY Model 10

a� b = (a+ b)mod2⇡. The Hamiltonian of the new configuration is

H(x0) = �J
X

i,j

X

NN+(i,j)

cos
�
x0
i,j � x0

i0,j0
�

(2.10)

= �J
X

i,j

X

NN+(i,j)

cos
�
xi,j +��x0 � xi0,j0 ���x0

�

= H(x)

Thus the Boltzmann distribution remains the same, as do the observables. Note that this is
a global symmetry, as opposed to the more "local" gauge symmetries.

U(1) symmetry of the XY model poses challenges in learning the model through ML
techniques, as there is a manifold of equivalent optima (referred to in the physics literature
as Goldstone modes). Later we shall see how to overcome this issue.

Another symmetry the XY model exhibits is discrete translational symmetry. Due to
periodic boundary conditions, any translation of lattice positions in the x-dimension or
y-dimension results in the same lattice. We take advantage of this symmetry through
convolutional neural networks which are translation-invariant.

Chapter 3

Normalizing Flows

3.1 Introduction

In this chapter, we look at Normalizing Flows (NFs). NFs [40, 43] are a composition of
differentiable invertible functions that map a random variable to another random variable.
They are a very powerful tool for generative machine learning. Using the formula for the
transformation of probability densities, we can compute the exact likelihood (probability
density) of the original r.v. as well as the transformed r.v. In the next sections, we look at
the building blocks of normalizing flows and also the transforming functions that allow us
to efficiently learn and generate samples from the desired distribution.

3.2 Transformation of Random Variables

Consider a continuous random variable z. Let there be a bijective function f that maps z

to another random variable x, x = f(z). the the probability density for x is given by

px(x) = pz(z) ·

�����
1

@f(z)
@z

�����

Since z = f�1(x), this can be rewritten as

px(x) = pz(f
�1(x)) ·

����
@f�1(x)

@x

����

11

Chapter 3. Normalizing Flows 12

For a multivariate random variable z 2 RD, with a bijective mapping f : RD ! RD to
x 2 RD, the multivariate version of this formula uses the absolute value of the determinant
of the jacobian Jf instead. The Jacobian of a vector-valued function of a multivariate input
is the matrix of its partial derivatives.

Jf (x) =

2

664

@f1(x)
@x1

. . . @f1(x)
@xn

...
@fn(x)
@x1

. . . @fn(x)
@xn

3

775 (3.1)

Using this Jacobian, we can write the probability transformation formula for a multivariate
bijection as

px(x) = pz(z) ·
���J�1

f
(z)

��� = pz(z) · |Jf (z)|�1 (3.2)

where | · | denotes the absolute value of the determinant function. Similarly, using the
identity z = f�1(x) instead, we get

px(x) = pz(f
�1(x)) ·

��Jf�1(x)
�� (3.3)

The probability pz(·) is a simple parametric one that is easy to evaluate and sample from.
Thus we start from a simple density and move toward a more complex and expressive one
through transformations. By taking different forms of the invertible function f , we can
apply normalizing flows to several unsupervised learning tasks. In the next section, we look
at how to learn a generative model from data using normalizing flows.

3.2.1 Composing Multiple Transformations

In this section we look at compositions of transformations. Without loss of generality, we
look at 2 transformations f1, f2. Their composition is given by f(x) = f2(f1(x)) = f2�f1(x).
The Jacobian of the composition is given by Jf = Jf2 · Jf1 .

If the transformations are bijective, the inverse transformation can be written as f�1(x) =

f�1
1 (f�1

2 (x)) = f�1
1 � f�1

2 (x). Note that the order of composition has been reversed. The
Jacobian of the composed inverse transformation is written in the same way as above.

We know that deep neural networks are powerful precisely because several transformations
are composed on top of each other, resulting in powerful representations as data is passed
through more and more layers or transformations. The same principle applies to normalizing

Chapter 3. Normalizing Flows 13

flows. By composing together multiple (relatively simple) transformations, we can create
highly expressive transformations for random variables, resulting in a large learning capacity
for such flows.

Starting with a random variable z, consider a composition of flow transformations f =

fn � fn�1 � . . . � f2 � f1. The composition is computed sequentially starting with f1 and
ending with fn. Let the intermemdiate outputs be denoted as

x(0) = z ⇠ pz(z)

x(i) = fi(x
(i�1)) 8i 2 {1 . . . n}

x = x(n).

The probability transformation formula is then written as

px(x
(n)) = pz(z) ·

nY

i=1

���J�1
fi

(x(i�1))
��� (3.4)

= pz(z) ·
nY

i=1

���Jfi(x
(i�1))

���
�1

Similarly, for an inverse transformation with the equivalent composition f�1 = f�1
1 � f�1

2 �
. . . � f�1

n�1 � f�1
n , the intermediate outputs are computed like so:

z(0) = x ⇠ px(x)

z(i) = f�1
(n+1�i)(z

(i�1)) 8i 2 {1 . . . n}

z = z(n),

and the probability transformation formula is written as

px(x) = pz(z
(n)) ·

nY

i=1

���J
f
�1
n+1�i

(z(i�1))
��� (3.5)

The parameters of the flow composition are the set of parameters of the individual transfor-
mations, � = {�i}ni=1.

Chapter 3. Normalizing Flows 14

3.3 Learning Normalizing Flows

We will look at 2 methods of learning normalizing flows. Both methods utilize the Kullback-
Leibler (KL) divergence between two distributions.

3.3.1 Forward KL Divergence

The forward KL divergence is defined as

KL [p(x)||q(x)] =
Z

x

log
p(x)

q(x)
p(x)dx = Ep(x)


log

p(x)

q(x)

�
� 0 (3.6)

If we are given some data and want to learn a flow that generates samples similar to the
data, we can use the forward KL divergence to optimize the flow to do so. Assume the data
follows a distribution p⇤(x), such that

D = {xi}Ni=1
i.i.d.⇠ p⇤(x), (3.7)

where D is the dataset.

For a composition of flow transformations f�1, used as z = f�1(x;�), we also define the
distribution pf�1(x)

def
= px(x) as the distribution of the flow outputs, which are related to

the simple starting distribution pf�1(z)
def
= pz(z) as in Equation 3.5. The flow distribution

pf�1(x) contains the variational parameters �, which are the parameters of the flow bijection
f�1.

We try to optimize � such that the forward KL divergence between p⇤(x) and px(x) is
minimized. More formally, our objective is:

min
�

KL
⇥
p⇤(x)||pf�1(x)

⇤
(3.8)

()min
�

Ep⇤(x)

⇥
� log pf�1(x)

⇤

The second objective here follows from the fact that p⇤(x) is independent of �.

The central issue in this minimization problem is that the data density is usually unknown.
Even if we have an explicit unnormalized data density p̃⇤(x) such that p⇤(x) = p̃

⇤(x)
Z⇤ , only

in trivial cases do we have an analytical form of the integral. Therefore, to alleviate this

Chapter 3. Normalizing Flows 15

issue, we use the Monte Carlo (MC) estimate of the forward KL [35]. This is written as

KL
⇥
p⇤(x)||pf�1(x)

⇤
⇡ 1

N

X

xi2D
� log pf�1(x) (3.9)

This is equivalent to negative log-likelihood minimization of the flow. The MC estimator is
asymptotically unbiased, as are its gradients. Furthermore, it is well suited for stochastic
optimization settings, as a randomly sampled minibatch of the dataset also results in an
unbiased estimator.

Because we have access to the observations x and not the latents z, we used the trans-
formation formula in Equation 3.5 and not Equation 3.4. The algorithm then amounts
to:

1. Choose a random minibatch of data Di = x1 . . .xk, and transform the data through
the inverse flow transformation f�1 to get z1 . . . zk and corresponding intermediate
transformations.

2. Compute the MC estimator in Equation 3.9.

3. Backpropagate through the free variables � and repeat for several iterations.

At the end of the training procedure, assuming the objective is sufficiently optimized, we
can generate new data x that match the target data distribution through the forward flow
transformation f = fn � fn�1 � . . . � f2 � f1.

3.3.2 Reverse KL Divergence

KL divergence is a non-symmetric divergence, that is, KL [p||q] 6= KL [p||q]. This means
that changing the order of the densities results in different objectives that provide different
results. Reverse KL divergence is simply reversing the density orders in the forward Kl
divergence. It is defined as

KL [q(x)||p(x)] =
Z

x

log
q(x)

p(x)
q(x)dx = Eq(x)


log

q(x)

p(x)

�
� 0 (3.10)

Note that compared to Equation 3.6, the expectation is over q instead of p. In learning
settings, this may result in drastically different results. Forward KL results in mode collapse,
whereas Reverse KL results in mode covering behaviour.

Chapter 3. Normalizing Flows 16

Perhaps the most important requirement for using Reverse KL is that we must be able to
compute p⇤(x), or rather the unnormalized density p̃⇤(x). This is because one of the terms
inside the expectation is log p⇤(x). An exact value of this is required for an unbiased MC
estimator of the Reverse KL.

On the flip side, a massive advantage of this is that we do not need data to train a flow,
the log density of the target suffices. Therefore this is ideal for settings when procuring
data for the learning task is expensive but computing the target density is cheap.

Reverse KL divergence is used for learning normalizing flows that produce samples that
follow a prescribed density. It is very well suited to applications in the sciences, where we
want samples but only have the (unnormalized) log probability. For example, if we have
the Hamiltonian of a system, we may be able to train flows that generate samples from
the Boltzmann distribution of the system. This training method is also known in the ML
literature as probability density distillation [38, 37].

The optimization objective when Reverse KL is used is

min
�

KL [pf (x)||p⇤(x)] (3.11)

()min
�

Epf (x) [log pf (x)� log p⇤(x)] .

Note that for x = f(z), Epx [g(x)] = Epz [g(f(z))]. Using this identity, we can rewrite the
objective as

min
�

Epf (z) [log pf (f(z))� log p⇤(f(z))] . (3.12)

where the expectation is over the simpler distribution pz(z) and the first term in the
expectation is computed as in Equation 3.4. Here, both terms are a function of the free
variables � and the second term provides the information about the target density.

The MC estimator of the reverse KL is computed by sampling from the base distribution
pz(z), and is of the form

KL [pf (x)||p⇤(x)] ⇡
1

N

X

zi⇠pz(z)
i=1...N

[log pf (f(zi))� log p⇤(f(zi))] (3.13)

In case we can only compute the unnormalized target density p̃⇤(x), the log normalizing
constant logZ⇤ separates out of the estimator as a constant, making no difference to the

Chapter 3. Normalizing Flows 17

gradient of the MC estimator. The algorithm for training with the reverse KL divergence is
as follows:

1. Sample zi ⇠ pz(z) for i = 1 . . . k. Here pz(z) is simple, for example a standard Normal
or Uniform distribution.

2. Transform z through the flow transformation f to get x1 . . .xk and corresponding
intermediate transformations.

3. Compute the log target density for x1 . . .xk.

4. Compute the MC estimator in Equation 3.13.

5. Backpropagate through the free variables � and repeat for several iterations.

Once training is completed and the objective is converged, new samples are generated by
following steps 1 and 2.

3.4 Normalizing Flows for Circular Variables

Rezende and Mohamed in [43] prescribe some standard bijections for real valued variables.
A linear flow bijection is of the form f(x) = a+ h(Bx+ c), where h(·) is a component-wise
application of a bijection such as a logistic function or tanh. We have similar forms for
radial flows.

Normalizing flows in non-Euclidean domains [17, 48, 4, 44] are not as easy to construct.
For compact spaces such as angular data, bijections need to be constrained to a compact
space. Additionally, these bijections need to be composable, and flows should increase in
their expressivity with the number of compositions they are made up of. In our case, lattice
sites are angle-valued, meaning x 2 TD, where TD is a product space that factorizes as
DQ
S1 with S1 as a circle.

In this section we will review the method introduced in [44] that constructs flows on circular
domains. The work shows that a bijection f acting on a circular variable x 2 S1 must have

Chapter 3. Normalizing Flows 18

the following properties:

f(�⇡) = �⇡ (3.14)

f(⇡) = ⇡ (3.15)

rxf(x) > 0 (3.16)

rxf(x)|x=�⇡ = rxf(x)|x=⇡ (3.17)

The fixed points �⇡,⇡ can be shifted by a translation operator (which is a bijection with
identity Jacobian). To create such a bijection f satisfying the above 4 properties, the
authors adopted the use of monotonic rational quadratic splines [20] as in Neural Spline
Flows [15].

3.4.1 Circular Splines

Splines are functions that are defined piecewise, with a continuity constraint where the
functions meet. Formally, a spline s : [a, b] ! R can be written as:

s(x) =

8
>>><

>>>:

s0(x) x 2 [a,w0]

si(x) x 2 [wi�1, wi] 8i 2 {1 . . . k � 1}

sk(x) x 2 [wk�1, b],

(3.18)

with the additional constraint that si(wi) = si+1(wi), and in our case, rxsi(x)|wi =

rxsi+1(x)|wi .

Rational quadratic splines [20] use the rational quadratic form for each piecewise function,

si(x) =
a(1)
i

x2 + b(1)
i

x+ c(1)
i

a(2)
i

x2 + b(2)
i

x+ c(2)
i

In out case, we have an additional constraint on the spline to be monotonically increasing. For
a given interval in the spline domain [wi�1, wi], output interval [hi�1, hi], derivative values
at the end [di�1, di], and positive derivative everywhere, we can represent the parameters
{a(1), b(1), c(1), a(2), b(2), c(2)} in terms of {wi�1, wi, hi�1, hi, di�1, di}. (For derivation refer
[15], Section 3.1.)

To employ these splines as bijections for circular variables, we need to enforce the bijection
conditions for circular variables. The first to third conditions can be easily enforced as

Chapter 3. Normalizing Flows 19

above. The fourth condition of equal gradient at �⇡,⇡ can be satisfied by simply enforcing
the derivative of s0 at �⇡ to be the same as that of sk at ⇡.

Thus a circular spline s : [�⇡,⇡] ! [�⇡,⇡] is composed of K piecewise rational quadratic
splines. The spline can be parameterized by three vectors: 1) W containing the widths of
each of the pieces with the vector’s sum equal to 2⇡, 2) H containing the corresponding
heights with its sum also equal to 2⇡, and 3) D containing the (positive) derivatives at each
knot (or intersection) between the pieces. Note that the number of knots, including the
ends, is K +1. However, the fourth bijection condition requires the derivatives the first and
last knots to be the same. Increasing the number of pieces K results in a more expressive
bijection. We shall henceforth refer to these bijections as Circular Spline Flows (CSF).

For an input z, computing the output x of a CSF f is straightforward. First the piece
index k is computed such that z lies in the k-th piece of the CSF. This can be done in log k

time using binary search. Then the corresponding piecewise function is applied to give the
output, along with the derivative at that point.

We can compose these splines together as in Section 3.2.1 to construct extremely expressive
flows. Figure 3.1 shows the target density and model density for a learned composition of
CSFs. The flow manages to learn perfectly the multimodal density.

3.5 Coupling-based Architecture for Multivariate Normaliz-

ing Flows

While constructing practical bijections in multivariate settings, we run into several problems.
Most of these are concerning the computation of the determinant of the Jacobian as a part
of the model density. Firstly, the Jacobian should be invertible such that the determinant
is non-zero (hence the bijection). Secondly, for a dense Jacobian matrix of a function in D

dimensions, the determinant computation scales as O(D3). This is prohibitively expensive
for high-dimensional data such as images, and in our cases, reasonably sized lattices.

To alleviate this, researchers have come up with clever tricks to construct flows so that
they are simultaneously highly expressive while allowing for efficient density evaluations.
Two major methods ubiquitous in literature are autoregressive flows [39, 28, 45] and
coupling flows [12, 13, 14, 15]. Both these methods leverage designs that constrain the
Jacobian to be lower-triangular and hence computable in O(D) time. (See Figure 3.2 for
how Jacobians are structured in the two approaches.) In this work, we will look at coupling

Chapter 3. Normalizing Flows 20

Figure 3.1: Testing CSF compositions on a 1D toy problem. Top left: the target density
is a mixture of 4 von Mises distributions. Top right: bijections learned by the flow. Bottom
left: Flow density optimized using Reverse KL, with an effective sample size (ESS) of
99.86%. Bottom right: Flow density optimized using Forward KL with an ESS of 99.61%.

Flow is composed of 10 CSFs with K = 5 pieces each.

flows and employ them for learning the XY model. In the following we will look at coupling
layers and how in [44] coupling based CSFs are created for multivariate angular data with
the domain as TD.

Coupling flows split the random variable into two components z = [z(1), z(2)]. Given a
1-dimensional bijection f(z; ✓) where ✓ are the parameters for the bijection, the flow outputs

Chapter 3. Normalizing Flows 21

Jf

(a) Autoregressive Flow

Jf

(b) Coupling Flow

Figure 3.2: Jacobian structures for Autoregressive and Coupling Flow architectures. In
both cases, simply multiplying the diagonal values of the Jacobian gives us the determinant

in O(D) time.

two equal sized components as x = [x(1),x(2)]. The computation happens like so:

x(1) = z(1) (3.19)

✓ = NN�(z(1)) (3.20)

x(2) = f(z(2); ✓) (3.21)

In our case, f is a CSF with ✓ = {W,H,D} as CSF parameters. NN� is a Neural Net
with parameters � that takes as input the first component of the input and outputs the
parameters of the CSF. Then the outputted parameters are used to transform the second
component (the transform is applied component-wise as it is a scalar bijection). Also,
because we did not transform the first component, the inverse is very easy to compute.

z(1) = x(1) (3.22)

✓ = NN�(x(1)) (3.23)

z(2) = f�1(x(2); ✓) (3.24)

The inputs and outputs of the neural net remain the same in both cases, and all that
changes is the usage of f�1 instead of f .

The power of coupling flows arises from the fact that arbitrarily powerful neural nets can be
used for modeling dependency between the two components. Although the first component
remains unchanged, we can compose additional coupling flows in which the first component
is the one that is transformed now. Stacking these flows allows us to learn highly complex
multidimensional distributions.

Chapter 3. Normalizing Flows 22

Figure 3.3: Learning a toy problem p⇤(x) / exp{4 cos(x1 � x2)}. Left: real density.
Right: flow learned density with an ESS of 98.4%. Flow consists of 8 transformations and
uses a single hidden-layer Feedforward Neural Net with 16 hidden units. Training done

using Reverse KL divergence.

Here the components we create by splitting the vector x in half. In practice, the splitting
can be arbitrary (but fixed for a specific flow transformation). We split the variable using a
mask m 2 {0, 1}D. Multiplying with the mask turns the masked values to be zero which
are then passed to the neural net. This gives us

x = (1�m) · z + m · f(z;NN�((1�m) · z)) (3.25)

The mask is then flipped for alternate coupling flow transformations which are composed.
When the component-wise transformation f is a CSF, we call this flow transformation
as Coupling-Circular Spline Flow (C-CSF). A C-CSF-learned density for a 2D toy
problem is shown in Figure 3.3.

The Jacobian of (flattened outputs of) C-CSF has the block structure as

JC-CSF =

"
I 0

A B

#
(3.26)

Visually the Jacobian has a structure shown in Figure 3.2b. B is a diagonal matrix with
diagonal elements as the derivatives of the unidimensional CSF for the d-th dimension of z(2).
As the Jacobian is lower-triangular, its absolute value of determinant is |JC-CSF| = |

Q
i
Bii|.

In the next chapter, we create a temperature-conditioned C-CSF for learning to simulate
the XY model given a temperature.

Chapter 4

Related Work and Baselines

Our work employs deep generative models for physics. This topic has many recent works
that our work has built upon. We will look at some work that either uses machine learning
on the XY model or learns adjacent physics models through various techniques that we
have used. Most of this work uses either normalizing flows, variational autoencoders, or
generative adversarial networks as architectures.

4.1 Using Tractable likelihood Models for Learning Physics

Several models with the lattice formulation, both classical and quantum, have had significant
work on trying to simulate them using ML techniques. Normalizing flows for provably
and asymptotically unbiased simulation of physical models were introduced in [37]. This
work used normalizing flows with affine coupling layers to learn and generate states for
n-body problems and molecular simulation. Our work also uses the same framework, with
the addition of splines for learning angular spins and temperature-conditioning. [29] also
introduce flows that respect translational and rotational symmetry in Euclidean space for
n-body systems.

In particular, sampling lattices has benefitted greatly from using normalizing flows as
the proposal distribution. Lattice Field Theory models, such as the scalar �4 lattice
model [23], the complex-valued Schwinger model [49], and many other non-Abelian Lattice
Gauge Theory models (with SU(N) gauge symmetry) have been simulated by normalizing
flow-based deep generative models.

23

Chapter 4. Related Work and Baselines 24

[1] use RealNVP flows [13] to generate scalar �4 lattices. Their model, though, works on
lattices with real-valued fields, and they test for physical parameters that do not exhibit
spontaneous symmetry breaking. In [24], the authors employ Circular Splines with a
tile-based masking pattern to create gauge-equivariant flows that respect the U(1) gauge
symmetry present in the Schinger model. This is perhaps the closest model to ours, with
the exception that the XY model exhibits a global U(1) symmetry and our flow can
be conditioned on the temperature. Once again, the Schwinger model does not exhibit
spontaneous symmetry breaking for the choice of parameters it was tested on in this work.
A follow-up work [5] was published recently, creating equivariant flows for larger gauge
symmetry groups such as SU(N). This class of flow architectures was used for learning
Gauge Lattice Theory models. On the other hand, [21] used affine flows [13] to generate
the Ising model through the dual formulation of its Hamiltonian.

In addition to these tractable likelihood models, several works [10, 47, 41] have used
implicit likelihood generative models such as Variational Autoencoders (VAEs) [26, 27] and
Generative Adversarial Networks (GANs) [34].

4.2 Machine Learning approaches applied to the XY model

There also exists previous work on using supervised and unsupervised learning on the XY
model. One of the earliest applications of deep learning to the XY model was published in
[10], where the authors used Variational Autoencoders to generate microstates of the XY
model, conditioned on the temperature. At the critical temperature, learning to identify
vortex-antivortex pairs was also performed using supervised machine learning approaches
in [3]. Finally, recent work in [47] employs ImplicitGANs [11] to generate XY model
microstates. In the next section, we will briefly review the baselines [47, 10] we have chosen
to compare with our model.

4.3 Baselines

4.3.1 HG-VAE ([10])

The HG-VAE, as named in the paper, is a Conditional Variational Autoencoder (C-VAE)
that generates XY model lattices. The model consists of an encoder-decoder architecture,
where the encoder nerual net f takes as input MCMC configurations of the XY model and

Chapter 4. Related Work and Baselines 25

outputs the parameters f(x) of a latent variable (in this case, the Normal distribution.)
Latent variables z ⇠ N (z|f(x)) are then sampled from in the latent space and passed
through a decoder neural net g to generate new lattice microstates x̂.

The loss function is essentially the sum of the reconstruction error (between the input and
output lattices), the KL divergence between the outputted parameters from the encoder
and a standard Normal, and an additional loss term concerned with the computed energy
of the lattice.

LossHG-VAE =kx� x̂k2 +KL
h
N (z|f(x))kN (0, 1)

i
(4.1)

+ kE(x)� E(x̂0 ⇠ N(x̂,�2))k2

The last 2 terms act as regularizers to cover the space of possible lattice conficurations. The
entire architecture is conditioned on a scalar temperature T to make the model temperature
dependent.

4.3.2 ImplicitGAN ([47])

This approach uses a Generative Adversarial Net, with modifications to the loss functions,
to generate XY model microstates x conditioned on a temperature T . It consists of two
networks, a generator G and a discriminator D. Training is performed by generating a
viable lattice sample through G by inputting noise z and conditioning on the temperature,
x = G(z;T). This generated lattice sample is then passed through the discriminator D

conditioned on the same temperature T , which outputs the probability of the sample being
real or fake, that is, if it is from the data distribution or not. This creates a minimax game
between G and D, where G tries to generate realistic samples and D tries to distinguish
them from actual training data. When properly trained, the generator produces samples of
sufficient quality such that a properly trained discriminator may not be able to distinguish
them from the training data. New samples are then generated from G whenever required.

GANs by themselves often suffer from mode collapse – they are not able to cover the entire
high-mass region of the distribution they are attempting to learn. To counter this, [11]
introduced a change in the loss function that approximately maximizes the entropy of the
distribution of samples from G(z;T). This means that the output distribution tends toward
more diffuse states and hence mode-covering behavior increases. [47] add this trick into
their architecture to increase the accuracy of the ImplicitGAN model. This requires a third
auxiliary network A to match T and T̂ = A(x), where x may either be real or from G.

Chapter 4. Related Work and Baselines 26

Furthermore, training is regularized by minimizing the y component of mean magnetization
of the output lattices, thus getting rid of the global rotational symmetry of lattice spins.

Additional details and derivatives for the training objective and hyperparameters may be
found in the respective papers. All networks in these models use convolutional layers and
fully-connected layers.

Chapter 5

Proposed Model – Conditional
Coupling-Circular Spline Flow

Chapters 2 and 3 were expositions on the prerequisites required for our proposed methods.
In this chapter, we propose a conditional flow architecture for learning the XY model. We
also look at data preprocessing and training procedures for training with Forward KL as
well as Reverse KL. We will justify the architectural and optimization choices that we make
as inductive choices according to the XY model.

In the next section, we propose our model. Then we look at the data and training algorithm
used for Forward KL optimization, and after that for Reverse KL.

5.1 The Model

In Sections 3.4 and 3.5 we explained how to create flow compositions for learning multivariate
circular variables, resulting in the Coupling Circular Spline Flow (C-CSF) near the chapter’s
end. In this section, we will augment the C-CSF by conditioning the flows on the temperature
of the system. We call the augmented model as Conditional Coupling Circular Spline
Flow (CC-CSF).

In the flow composition F = Fn � . . . �F1, each C-CSF Fi is conditioned on the temperature.
Thus we have F (z|T) = Fn

⇣
Fn�1

�
. . . (F1 (z|T) . . . |T

�
|T

⌘
. The inverse of this is simply

the temperature conditioned inverse composition. The composition of CC-CSF is shown
in Figure 5.1. Figure 5.1a shows the composition for forward generation conditioned on
temperature T , while Figure 5.1b shows the inverse generation for the same.

27

Chapter 5. Proposed Model – Conditional Coupling-Circular Spline Flow 28

T

z F1 x(1) F2 x(2) . . .

. . .

x(M�1) FM x

(a) Forward Flow x = F (z|T)

T

xF�1
Mz(1)F�1

M�1z(2). . .

. . .

z(M�1)F�1
1z

(b) Inverse Flow z = F�1(x|T)

Figure 5.1: Forward and inverse conditional flow compositions

We use coupling layers with the same form as Equation 3.25. For the mask m we use a
checkerboard pattern that masks alternating locations in the 2D lattice. This pattern
is used as lattice spins are likely to be correlated with their nearest neighbors and then the
higher-order neighbors. Checkerboard masking enables the flows to learn the dependency
between these components. Furthermore, we compose two flows with alternate checkerboard
masking (,) to create a single CC-CSF flow layer that we see in Figure 5.1.

The neural network used inside the flow is a 2-layer fully-Convolutional Neural Net(CNN),
with periodic padding before each convolutional operator to enforce periodic boundary
conditions of the XY lattice. This fully convolutional architecture fits very well with the
checkerboard masking pattern. Additionally, along with periodic padding before each
convolution operator this architecture respects the discrete translational symmetry of the
XY model as mentioned in Section 2.5. As an input to the net, we concatenate the cosine
and sine components of the lattice (while setting the masked components of the lattice to 0)
with a 2D lattice filled up with the scalar temperature T , making a 3-channel input. The
output consists of 3K channels for each lattice site, resulting in a tensor of size (3K,L,L),
where L is the lattice size. Therefore for each lattice size, we obtain a 3K length vector
containing the CSF parameters. The CSF parameters are applied to each lattice point, but
only the unmasked positions are set to their transformed value. The masked positions are
kept the same as the input. A diagram of the CC-CSF layer is shown in Figure 5.2.

Finally, the starting distribution pz(z) of the complete flow composition is set to be a
Uniform distribution with support as [�⇡,⇡]L⇥L. Therefore the unnormalized probability
density of the model is simply the sum of the log of absolute-determinants of Jacobians of
all flow components.

Chapter 5. Proposed Model – Conditional Coupling-Circular Spline Flow 29

z

T

z(1)

f(z)

NN�

{W,H,D}
CSF

parameters

f

component-wise
CSF

mask

¬
✓ ◆

=

opposite mask

F (z|T)

�

Figure 5.2: Architecture of Condtional Coupling Circular Spline Flow with checkerboard

mask . A successive flow with the alternate checkerboard mask is composed
to form a single CC-CSF. For the inverse flow, simply use the inverse componentwise CSF

f�1 instead of f .

Because we have access to the unnormalized true density of the XY model, we can train this
flow using 2 methods: Forward KL and Reverse KL. The discrete translational symmetry of
the XY model is incorporated into the flow using convolutional layers and periodic padding.
The other symmetry, U(1) global rotational symmetry (Section 2.5), is a much more difficult
one to handle. As we shall see in the experimental section too, this symmetry results in
difficulties training the models using both Forward and Reverse KL. There has been recent
work on constructing normalizing flows that are equivariant to certain symmetries. However,
to the best of our knowledge, there hasn’t been any work on equivariant flows for U(1)

global rotational symmetry. Therefore, we attempt to employ augmentations in data and
training objectives to go around this problem. In the next section, we will see the two
different training methods for CC-CSF.

5.2 Training using Forward KL Divergence

The Forward KL divergence objective is the same as in Equation 3.8, except an outer
expectation over T is applied to the temperature-conditioned Forward KL. Assume that the
temperature is samples using probability pT (T). The Forward KL objective in this case is

min
�

EpT [KL [p⇤(x|T)||pF�1(x|T)]] (5.1)

Chapter 5. Proposed Model – Conditional Coupling-Circular Spline Flow 30

where � are the free variables which now consist of the neural network parameters for the
constituent flows.

Using the MC approximation of the KL gives us

min
�

1

N

X

{xi,Ti}
xi⇠p

⇤(x|Ti)

� log pF�1(xi|Ti) (5.2)

The gradient of this objective is independent of the terms that are constant with respect to �,
therefore we can simplify the objective by only writing the sum of log-absolute determinants
of the Jacobians of each flow F�1

1 (·|T) . . . F�1
M

(·|T). (The starting distribution pz(z) is a
Uniform, therefore the gradient of the logarithm is zero.)

The data {xi, Ti} that is used to optimize the above objective is generated through the MH
algorithm described in Section 2.2.

5.2.1 Magnetization Normalization of the Training Data

Recall that according to Equation 2.10, the Hamiltonian of the XY model is invariant to
addition of a constant angle to every spin in the lattice. Thus the Boltzmann distribution is
constant along a manifold in the (L⇥L) dimensional space. In other words, the Boltzmann
distribution of the XY model can be factorized into two components:

p⇤(x) = p⇤||(x)p
⇤
?(x), (5.3)

such that the magnetization of the entire lattice ((
P
u,v

cosxu,v,
P
u,v

sinxu,v)) is in a fixed

direction for samples from p⇤||, and the second component p⇤? adds the randomness back to
the samples’ directions of magnetization through a uniformly-sampled angle.

For a lattice x, we can subtract a x0 from every spin in x such that the resulting lattice
x� x0 has a horizontally-aligned magnetization, i.e.,

X

u,v

sin(xu,v � x0) = 0. (5.4)

We can apply this to every data point in our dataset for all temperatures, and thus get rid
of an unwanted degree of freedom. The resultant dataset is still distributed according to
the Boltzmann distribution, but lies on an (L2 � 1)-dimensional manifold over the entire

Chapter 5. Proposed Model – Conditional Coupling-Circular Spline Flow 31

domain [�⇡,⇡]L⇥L. As we shall later see, this results in a substantially smaller search
space of possible parameters for the flow and results in better generative models.

To implement this, we find the angle x0 according to Equation 5.4 and subtract it from the
lattice spins for every lattice in the dataset. We call this preprocessing step Magnetization
Normalization (magnorm).

5.3 Training using Reverse KL Divergence

Similar to the previous section, we change the Reverse KL objective in Equation 3.12 by
adding an outer expectation over temperatures, and changing the densities inside the reverse
KL by conditioning them on the temperature.

min
�

EpT

⇥
Epz(z) [log pF (F (z|T))� log p⇤(F (z|T))]

⇤
(5.5)

Since, log p⇤(x) = �H(x|T)� logZT , we can write the MC estimator of the shifted Reverse
KL in similar vein to Equation 3.13, as:

min
�

1

N

X

Ti⇠pT (T)
zi⇠pz(z)

[log pF (F (zi|Ti)) +H(F (zi|Ti)|Ti)] (5.6)

where � are the parameters of the neural nets in the flow composition F .

To reduce the parameter space of the flow in this case, we augment the Reverse KL loss
using a regularization term R(x) = �kxk2. Furthermore, we noticed that tempering the
target distribution �H(F (zi|Ti)|Ti) by multiplying it by a factor (1�↵) allowed us to learn
the flow and observables much better than the original Reverse KL objective. Combining
these two regularizations together, we denote the augmented Reverse KL objective :

min
�

1

N

X

Ti⇠pT (T)
zi⇠pz(z)

⇥
log pF (F (zi|Ti)) + (1� ↵) ·H(F (zi|Ti)|Ti) +R

�
F (zi|Ti)

�⇤
(5.7)

with ↵ 2 [0, 1]. The regularizer R forces the spins to be aligned toward 0, and hence breaks
the symmetry in the objective due to U(1) global rotational symmetry. The training process
works by sampling temperature T ⇠ pT (T) and starting variable z ⇠ pz(z), passing through
the forward flow, computing the Hamiltonian of the resulting lattice, and backpropagating
through the above augmented loss.

Chapter 5. Proposed Model – Conditional Coupling-Circular Spline Flow 32

In the next chapter, we will evaluate the proposed model and training objectives qualitatively
and quantitatively, and compare them to relevant baselines.

Chapter 6

Experiments

In this chapter, we will evaluate our models against specified baselines in Chapter 4. We will
also compute metrics to compare the accuracy of observables with respect to the "ground
truth", which is the observables from the MCMC simulation in Chapter 2. We will also
exploit the fully convolutional structure of our flow to perform transfer learning on larger
lattice sizes, and compare the transfer-learned model with baselines.

6.1 Metrics

We shall evaluate our models’ performance on the observables mentioned in 2.3. Since
we can generate individual lattice configurations from the flow, we can compute these
observables from them, and compute various metrics to determine if the observables match
the ground truth MCMC observables.

Each of the metrics needs to account for the mean as well as the variance of the computed
observables for each temperature. Since we evaluate over a range of different temperatures,
we will use an averaged value and maximum value for the entire range of temperatures.
Below we define the metrics used.

6.1.1 Earth Mover Distance (EMD)

EMD, also known as the Wasserstein Metric, computed the distance between two probability
distributions. In simple terms, EMD computed the minimum amount of mass needed to
be displaced to convert a probability distribution into another. The smaller the EMD is,

33

Chapter 6. Experiments 34

the better the probability distributions match. In our case, for a specific temperature, we
compute an observable for all lattices generated from the flow and compute the EMD against
the histogram for the observable computed from MCMC samples. For scalar observable
O = y at temperature T , the (normalized) histogram of the flow is denoted as HF (O = y|T),
and that of the MCMC samples as HM (O = y|T).

EMD
�
HF (O|T),HM (O|T)

�
=

+1X

x=�1

�����

xX

y=�1
(HF (O = x|T)�HM (O = y|T))

����� (6.1)

For a list of temperatures {T1 . . . TR} we compute the mean EMD as
1
R

RP
i=1

⇣
EMD

�
HF (O|Ti),HM (O|Ti)

�⌘
, and the max EMD as max

⇣
EMD

�
HF (O|Ti),HM (O|Ti)

�⌘
.

6.1.2 Percent Overlap (%OL)

%OL is a simpler metric to compute the similarity between two histograms. For each index
in the histogram, we compute the minimum value of the 2 histogram values, and sum over
all indices.

%OL
�
HF (O|T),HM (O|T)

�
=

X

x2bins

min (HF (O = x|T),HM (O = y|T)) (6.2)

%OL is not as accurate as EMD, as relatively accurate observables may still get a small
percent overlap, but it is useful in cases where the spread of the observable is large for a
certain temperature. For a range of temperatures, we use the mean and min versions of
this metric in a similar way as in EMD. In our experiments, we use 40 bins for each 1.0
increment range for our histograms to compute %OL.

6.1.3 L2 error

This metric is used for observables obtained as a scalar instead of a histogram for a specific
temperature, for example, Magnetic Susceptibility �. It is simply denoted as kx� yk2. For
a range of temperatures, we take the average norm.

Chapter 6. Experiments 35

6.2 Experiment Setting

Now we will state the hyperparameters for each architecture and training of the flow
composition used, along with the temperature ranges for the flow. We will also state the
MCMC algorithm’s hyperparameters.

6.2.1 MCMC Simulation hyperparameters

We generate the ’ground truth’ for lattices using MCMC as in Section 2.2. We consider the
range of temperatures in [0.025, 1.025] with equal increments for a total of 32 temperatures.
This consists of low temperatures, the critical region as well a slice of high-temperature
regions, and is sufficiently representative of the model for training purposes. We simulate
for lattice lengths of 8 and 16, although we observed a slight bias in magnetic susceptibility
at low temperatures for larger lattices. This is expected as

For simulating the lattice states, we use MH sampling. We thermalize the chain with a burn-
in of 200k samples. Afterward, we save samples every 400 steps to reduce autocorrelation
between samples, gathering a total of 10k samples for each temperature.

We also optionally perform magnetization normalization (Section 5.2.1) in cases where it
may be required for training.

Chapter 6. Experiments 36

M
od

el
L

E
M

D
E

ne
rg

y
E

M
D

M
ag

.
E

M
D

V
or

t.
%
O
L

E
ne

rg
y

%
O
L

M
ag

.
%
O
L

V
or

t.
L
2 �

M
ea

n
M

ax
M

ea
n

M
ax

M
ea

n
M

ax
M

ea
n

M
in

M
ea

n
M

in
M

ea
n

M
in

H
G

-V
A

E
[1

0]
8

0.
63

0.
79

0.
15

0.
22

0.
05

4
0.

07
9

11
.2

2
4.

01
58

.7
3

27
.6

0
49

.1
7

22
.6

5
3.

81
46

16
0.

59
3

0.
75

1
0.

12
4

0.
20

2
0.

04
6

0.
06

4
0.

25
5

0.
0

46
.5

3
2.

27
39

.1
9

5.
13

2.
93

39
Im

pl
ic

it
G

A
N

[4
7]

8
0.

03
5

0.
08

7
0.

05
9

0.
15

7
0.

00
3

0.
00

7
76

.9
4

7.
60

63
.9

8
33

.2
3

93
.8

8
86

.3
9

0.
09

99
16

0.
03

7
0.

07
4

0.
09

1
0.

27
4

0.
00

28
0.

00
64

63
.3

8
12

.5
5

43
.4

0
12

.8
8

94
.1

7
83

.1
8

0.
21

47
C

C
-C

SF
Fo

rw
.

K
L

8
0.

03
9

0.
08

7
0.

02
8

0.
09

3
0.

00
4

0.
01

0
84

.7
6

64
.9

3
86

.4
0

71
.4

6
93

.4
2

83
.8

5
0.

05
47

16
0.

05
4

0.
11

3
0.

04
8

0.
17

2
0.

00
7

0.
01

6
67

.1
9

40
.6

1
70

.3
9

34
.9

8
81

.9
9

59
.5

3
0.

21
38

C
C

-C
SF

R
ev

.
K

L
8

0.
02

5
0.

05
5

0.
03

9
0.

12
5

0.
00

3
0.

01
1

80
.6

1
50

.9
3

80
.9

8
62

.5
6

95
.9

0
84

.6
6

0.
06

30
16

0.
02

3
0.

07
5

0.
10

6
0.

30
2

0.
00

36
0.

01
19

85
.3

2
62

.3
1

50
.4

6
7.

08
90

.3
0

64
.2

9
0.

21
67

T
ab

le
6.

1:
E

va
lu

at
ed

m
et

ri
cs

fo
r

ba
se

lin
es

an
d

flo
w

m
od

el
s.

Fo
r

re
ve

rs
e

K
L

C
C

-C
SF

,↵
=

0.
53

fo
r
L
=

8
an

d
↵
=

0.
55

fo
r
L
=

16
.

M
ea

n
an

d
m

ax
va

lu
es

ar
e

co
m

pu
te

d
ov

er
th

e
ra

ng
e

of
te

m
pe

ra
tu

re
T

2
[0
.0
25
,1
.0
25
],

w
it

h
32

eq
ua

lly
sp

ac
ed

in
te

rv
al

s.

Chapter 6. Experiments 37

6.2.2 Flow Settings

The flow used contains a total of 15 compositions, each of these further containing 2 flow
compositions each with alternating checkerboard masking. Thus in total, the flow consists
of 30 transformations. Each transformations uses the Temperature-conditioned Coupling
CSF introduced in Section 5.1. The Circular Splines for each transformation contain a
total of K = 5 piecewise functions. The neural network for outputting parameters within
each transformation consists of a single hidden layer fully-convolutional neural net with
2D filters of size 3. We use periodic padding for these convolution layers to preserve the
periodic boundary conditions of the lattice. As we shall later see, this fully convolutional
neural net allows us to train flows for larger lattice sizes through transfer learning.

6.2.2.1 Training and Evaluation

We train the flows broadly with 2 methods and their regularization techniques, which are
outlined in Sections 5.2, 5.3. For Forward Kl training, we train the flow with the above
specifications for a total of ⇠ 6k iterations. During training through reverse KL, we train
the flow for longer, ⇠ 15k iterations. We use the ADAM [25] optimizer, with a learning rate
of 2⇥ 10�4 and a cosine learning rate scheduler [19]. We monitor the observable metrics
and loss while training for tuning relevant training hyperparameters.

While evaluating the flows, we generate 1k samples for each temperature in the temperature
range described previously. We then compute the various metrics introduced in Section
6.1, and have tabulated these results compared to the baselines considered in Section 4.3 in
Table 6.1.

6.3 Observations

6.3.1 Training the Flow with Forward KL

Training using Forward KL, a) without magnorm, and b) with magnorm produces vastly
different results. We noticed that without magnorm, the model produces lattice observables
that are far from the MCMC samples. We conjecture that this is because the model is
not powerful enough to model a continuum of identical modes in the probability space.
magnorm essentially collapses these modes into one single mode by eliminating all of the
other ones entirely from the dataset.

Chapter 6. Experiments 38

With magnorm, the flow can learn sufficiently close observables to the MCMC samples.

All observables computed with the MH algorithm are shown in Figure 2.2.

6.3.2 Training the Flow with Reverse KL

We observe that with the Reverse KL objective, the flow is not able to learn the distribution
and produces poor observables and metrics if we do not employ explicit regularization as
introduced in Section 5.3. With regularization enabled, the flow performs on par with
Forward KL-trained flow, and is competitive with and often beats ImplicitGAN. A constant
value of � = 1

2⇡2 was used in Equation 5.7, while a simple grid search for the hyperparameter
↵ was employed while training the flow. It seems like the tempering of the target density (the
XY model’s Boltzmann distribution) was crucial in stabilizing the training and increasing
the accuracy of the Reverse KL-trained flow. The additional term of minimizing the sine
component of the spins additionally stabilized training, albeit a large weight to this term
hindered training.

6.3.3 Comments on Performance

We list here some observations by analyzing Table 6.1 and Figures 6.1,6.2. In general, the
flow performs on par or better than ImplicitGAN in all metrics, while being significantly
better than HG-VAE. Also note that usually the flow trained using Reverse KL is better at
matching vorticity than the one trained using Forward KL, while the latter is better at the
other observables.

The mean and max EMD for vorticity is better in the case of ImplicitGAN, however, the
flows perform equally well and the values themselves are so small that the discrepancy may
be attributed to randomness between the runs. Also, it is clear that magnetization is better
learned by the Forward KL flow, and energy by the Reverse KL trained one.

Magnetic susceptibility, however, is harder to learn as it peaks more near the critical
temperature as the lattice size increases. In Figures 6.1 and 6.2, it can be seen that in the
case of flows, the peak for model-produced lattices occurs at a higher temperature than it
should. In contrast, ImplicitGAN has those peaks at roughly the same temperatures as in
MCMC. Nevertheless, according to L2 metric, both the flow and ImplicitGAN are close
in reproducing the susceptibility observable. There needs to be more analysis performed

Chapter 6. Experiments 39

(a) Observables for L = 8

(b) Observables for L = 16

Figure 6.1: Observables for L = 8 and L = 16, computed using samples from a) MCMC,
b) HG-VAE, c) ImplicitGAN, and d) CC-CSF trained using Forward KL. Susceptibility at

low temperatures for HG-VAE was highly divergent, hence omitted.

Chapter 6. Experiments 40

(a) Observables for L = 8

(b) Observables for L = 16

Figure 6.2: Observables for L = 8 and L = 16, computed using samples from a) MCMC,
b) HG-VAE, c) ImplicitGAN, and d) CC-CSF trained using Reverse KL. Susceptibility at

low temperatures for HG-VAE was highly divergent, hence omitted.

Chapter 6. Experiments 41

in our case for these higher-order observables, especially since they tend to diverge in the
critical region and are thus harder to learn.

A question then arises: when should we use the Forward KL vs Reverse KL for training
the flow? It seems that if our goal is to approximate magnetization, we should use the
Forward KL as the training method. In any case, if we do not have access to MCMC
samples beforehand, we will have to use the Reverse KL method, as it only requires the
Hamiltonian formula of the XY model. If we do have the samples, we can simply resort
to using Forward KL, as the training is slightly faster. In the sample generation phase
during testing, the flows were slightly slower than the ImplicitGAN and HG-VAE (owing
to multiple sequential transformations), but both were orders of magnitude faster than
MCMC. Training the ImplicitGAN and HG-VAE was slightly faster than our flow models.
However, it is also worth pointing out that training of flow models is relatively simple, as
normalizing flows are somewhat more robust to training initializations and hyperparameters
settings than the competing methods. We found that ImplicitGAN was significantly harder
to train, requireing multiple training runs due to problems with mode collapse.

6.4 Transfer Learning for Larger Lattices –

A Qualitative Analysis

Since our flow architecture is fully convolutional, it does not depend on the size of the lattice
we want to generate. Therefore, simply changing the size of the checkerboard masking
pattern to be bigger for a bigger lattice size means that we can apply the same filters we
learned at lower lattice sizes and use them to further learn larger lattice models. A recent
work [5] performs this transfer learning on Lattice Field Theory models. In this section, we
shall see a brief demonstration of whether transfer learning is possible in the XY model.

We want to learn a flow to generate lattices with size 32⇥ 32. Since even MCMC struggles
to generate such large lattices fast enough, we shall use the flow that we trained on smaller
8 ⇥ 8 sized lattices. In this experimental setting, we used a larger temperature range of
T 2 [0.36, 1.40], as generating L = 32 sized lattices in the low-temperature regime turns
out to be slow for MCMC. Furthermore, the MCMC samples at such low temperatures are
not sufficiently thermalized, and therefore impact the training of the flow. This is an area
we will have to investigate further.

We take the layers of the Flow F8⇥8 and create a new flow composition F32⇥32 with these
same layers. The Forward KL objective is used for finetuning of the model on MCMC

Chapter 6. Experiments 42

samples of 32⇥ 32 size. The only thing that we need to change is the checkerboard mask m,
which is now 32⇥32 instead of 8⇥8. Figure 6.3a shows observables from samples generated
from F32⇥32, without any finetuning with new data. Figure 6.3b shows the observables
after finetuning with MCMC data for a few epochs.

Qualitatively, we observe that the flow already matches the energy quite well even without
finetuning. Magnetization is observed to be inaccurate for the new flow, as it drops even
more rapidly with temperature for higher lattice sizes. However, after finetuning, we see
that the magnetization has a even better fit to the MCMC data than before. Due to the
larger lattice size, magnetic susceptibility peaks very sharply at the critical temperature,
and the flow is inadequate for modeling the peak.

Interestingly, ImplicitGAN fails to learn the 32 ⇥ 32 sized lattice, giving a significantly
worse fit to the MCMC data. ImplicitGAN also gives extremely sharp predictions at each
temperature, where the variance of the observables is very small, suggesting mode collapse
behaviour at larger lattice sizes. At lower temperatures, the observables are very inaccurate,
which might be due to less thermalization of the lattice samples at low temperatures. It
seems that ImplicitGAN thus requires very accurate MCMC samples to produce the same
degree of accuracy as our model.

One can similarly perform this transfer learning with Reverse KL as the training objective.
More work on this front needs to be done before this method of generating larger lattices is
scalable with enough accuracy.

Chapter 6. Experiments 43

(a) Flow model before finetuning.

(b) Flow model after finetuning.

Figure 6.3: Observables computed using samples from a) MCMC, b) CC-CSF transfer-
learned from L = 8 flow, b) ImplicitGAN trained on 32⇥ 32 lattice data simulated using
MH algorithm. Finetuning was done using Forward KL objective. For both models,

dataset used contains 10k samples for each temperature.

Chapter 7

Conclusion and Future Work

This work demonstrated the application of normalizing flows for accelerating simulation of
the XY model. Experimental analyses were presented for lattice sizes of 8⇥ 8 and 16⇥ 16.
We observed performance beating or competitive with the state-of-the-art accelerated
simulation approaches. We also demonstrated the capability of transfer learning to large
lattice sizes.

It is worth noting that all the baselines, and our proposed model, only approximate the
XY model, and are not asymptotically unbiased. Our model, being a tractable likelihood
model, has the capacity for unbiased generation of samples through post-hoc correction
through MCMC or Importance Sampling [1, 24, 5, 37]. However, the implicit and explicit
regularizations we employ hinder the flow’s capability of density matching, sacrificing it for
sample fidelity. Training with no regularization does not match either density or samples
from the XY model. As a result, applying post-hoc correction techniques to match the XY
model’s Boltzmann distribution in an exact manner does not work – the density outputted
by the flow and the Boltzmann distribution suffer from a mismatch. As the physical
models that are learned in the abovementioned related work do not contain continuous
symmetry and topological phase transitions together, this leads us to hypothesize that lattice
models with topological phase transitions and global continuous symmetry constraints are
significantly harder to learn than those with no phase transitions or discrete symmetry.
Thus, we may reequire more specialized architectures to effectively model its symmetries.

As future work, we are in the process of baking in the U(1) global rotational symmetry
constraint into the XY model. In preliminary results, we find that an equivariant flow model
constructed in a manner similar as in [24] enabled us to learn perfectly a 1-D XY model
spin chain, with relatively simple network architecture and vanilla Reverse KL objective.

44

Chapter 7. Conclusion and Future Work 45

Our current model construction was unable to do so without regularization. However, the
2-D XY model was unable to be learned efficiently at low temperatures, while it was easy to
learn at high temperatures – this is without any regularization applied. More analysis needs
to be done for learning such models at lower temperatures and enable post-hoc correction
mechanisms.

Bibliography

[1] MS Albergo, G Kanwar, and PE Shanahan. Flow-based generative models for markov
chain monte carlo in lattice field theory. Physical Review D, 100(3):034515, 2019.

[2] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An
introduction to mcmc for machine learning. Machine learning, 50(1-2):5–43, 2003.

[3] Matthew JS Beach, Anna Golubeva, and Roger G Melko. Machine learning vortices at
the kosterlitz-thouless transition. Physical Review B, 97(4):045207, 2018.

[4] Avishek Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and William L
Hamilton. Latent variable modelling with hyperbolic normalizing flows. arXiv preprint

arXiv:2002.06336, 2020.

[5] Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S
Albergo, Kyle Cranmer, Daniel C Hackett, and Phiala E Shanahan. Sampling using
su(n) gauge equivariant flows. arXiv preprint arXiv:2008.05456, 2020.

[6] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali
Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical
sciences. Reviews of Modern Physics, 91(4):045002, 2019.

[7] Juan Carrasquilla and Roger G Melko. Machine learning phases of matter. Nature

Physics, 13(5):431–434, 2017.

[8] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings
algorithm. The American Statistician, 49(4):327–335, 1995.

[9] Barry A Cipra. An introduction to the ising model. The American Mathematical

Monthly, 94(10):937–959, 1987.

[10] Marco Cristoforetti, Giuseppe Jurman, Andrea I Nardelli, and Cesare Furlanello.
Towards meaningful physics from generative models. arXiv preprint arXiv:1705.09524,
2017.

46

Bibliography 47

[11] Adji B Dieng, Francisco JR Ruiz, David M Blei, and Michalis K Titsias. Prescribed
generative adversarial networks. arXiv preprint arXiv:1910.04302, 2019.

[12] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent
components estimation. arXiv preprint arXiv:1410.8516, 2014.

[13] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real
nvp. arXiv preprint arXiv:1605.08803, 2016.

[14] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Cubic-spline
flows. arXiv preprint arXiv:1906.02145, 2019.

[15] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline
flows. In Advances in Neural Information Processing Systems, pages 7511–7522, 2019.

[16] Stavros Efthymiou, Matthew JS Beach, and Roger G Melko. Super-resolving the ising
model with convolutional neural networks. Physical Review B, 99(7):075113, 2019.

[17] Mevlana C Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on
riemannian manifolds. arXiv preprint arXiv:1611.02304, 2016.

[18] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature,
521(7553):452–459, 2015.

[19] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A
closer look at deep learning heuristics: Learning rate restarts, warmup and distillation.
arXiv preprint arXiv:1810.13243, 2018.

[20] JA Gregory and R Delbourgo. Piecewise rational quadratic interpolation to monotonic
data. IMA Journal of Numerical Analysis, 2(2):123–130, 1982.

[21] Gavin S Hartnett and Masoud Mohseni. Self-supervised learning of generative spin-
glasses with normalizing flows. arXiv preprint arXiv:2001.00585, 2020.

[22] Hong-Ye Hu, Shuo-Hui Li, Lei Wang, and Yi-Zhuang You. Machine learning holographic
mapping by neural network renormalization group. Physical Review Research, 2(2):
023369, 2020.

[23] Max Jensen and Kilian Nickel. �4 theory on the lattice. 2011. URL https://www.

hiskp.uni-bonn.de/uploads/media/phi4.pdf.

[24] Gurtej Kanwar, Michael S Albergo, Denis Boyda, Kyle Cranmer, Daniel C Hackett,
Sébastien Racanière, Danilo Jimenez Rezende, and Phiala E Shanahan. Equivariant
flow-based sampling for lattice gauge theory. arXiv preprint arXiv:2003.06413, 2020.

https://www.hiskp.uni-bonn.de/uploads/media/phi4.pdf
https://www.hiskp.uni-bonn.de/uploads/media/phi4.pdf

Bibliography 48

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[26] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[27] Diederik P Kingma and Max Welling. An introduction to variational autoencoders.
arXiv preprint arXiv:1906.02691, 2019.

[28] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improved variational inference with inverse autoregressive flow. Advances in

Neural Information Processing Systems, 29:4743–4751, 2016.

[29] Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations
for multi-body systems with symmetric energies. arXiv preprint arXiv:1910.00753,
2019.

[30] J M Kosterlitz. The critical properties of the two-dimensional xy model. Journal of

Physics C: Solid State Physics, 7(6):1046–1060, mar 1974. doi: 10.1088/0022-3719/7/
6/005. URL https://doi.org/10.1088/0022-3719/7/6/005.

[31] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

[32] Shuo-Hui Li and Lei Wang. Neural network renormalization group. Physical Review

Letters, 121(26):260601, 2018.

[33] Jaechang Lim, Seongok Ryu, Jin Woo Kim, and Woo Youn Kim. Molecular generative
model based on conditional variational autoencoder for de novo molecular design.
Journal of Cheminformatics, 10(1):1–9, 2018.

[34] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784, 2014.

[35] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo
gradient estimation in machine learning. arXiv preprint arXiv:1906.10652, 2019.

[36] Kim A. Nicoli, Shinichi Nakajima, Nils Strodthoff, Wojciech Samek, Klaus-Robert
Müller, and Pan Kessel. Asymptotically unbiased estimation of physical observables
with neural samplers. Phys. Rev. E, 101:023304, Feb 2020. doi: 10.1103/PhysRevE.
101.023304. URL https://link.aps.org/doi/10.1103/PhysRevE.101.023304.

https://doi.org/10.1088/0022-3719/7/6/005
https://link.aps.org/doi/10.1103/PhysRevE.101.023304

Bibliography 49

[37] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365(6457):
eaaw1147, 2019.

[38] Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg, et al.
Parallel wavenet: Fast high-fidelity speech synthesis. In International Conference on

Machine Learning, pages 3918–3926. PMLR, 2018.

[39] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow
for density estimation. In Advances in Neural Information Processing Systems, pages
2338–2347, 2017.

[40] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference.
arXiv preprint arXiv:1912.02762, 2019.

[41] Jan M Pawlowski and Julian M Urban. Reducing autocorrelation times in lattice
simulations with generative adversarial networks. Machine Learning: Science and

Technology, 1(4):045011, 2020.

[42] AST Pires, LS Lima, and ME Gouvea. The phase diagram and critical properties of
the two-dimensional anisotropic xy model. Journal of Physics: Condensed Matter, 20
(1):015208, 2007.

[43] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing
flows. arXiv preprint arXiv:1505.05770, 2015.

[44] Danilo Jimenez Rezende, George Papamakarios, Sébastien Racanière, Michael S Al-
bergo, Gurtej Kanwar, Phiala E Shanahan, and Kyle Cranmer. Normalizing flows on
tori and spheres. arXiv preprint arXiv:2002.02428, 2020.

[45] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Im-
proving the pixelcnn with discretized logistic mixture likelihood and other modifications.
arXiv preprint arXiv:1701.05517, 2017.

[46] Samuel S Schoenholz. Combining machine learning and physics to understand glassy
systems. In Journal of Physics: Conference Series, volume 1036, page 012021, 2018.

[47] Japneet Singh, Vipul Arora, Vinay Gupta, and Mathias S Scheurer. Generative
models for sampling and phase transition indication in spin systems. arXiv preprint

arXiv:2006.11868, 2020.

Bibliography 50

[48] Prince Zizhuang Wang and William Yang Wang. Riemannian normalizing flow on
variational wasserstein autoencoder for text modeling. arXiv preprint arXiv:1904.02399,
2019.

[49] Wikipedia contributors. Schwinger model — Wikipedia, the free encyclopedia,
2020. URL https://en.wikipedia.org/w/index.php?title=Schwinger_model&

oldid=993425224.

[50] Ulli Wolff. Collective monte carlo updating for spin systems. Physical Review Letters,
62(4):361, 1989.

https://en.wikipedia.org/w/index.php?title=Schwinger_model&oldid=993425224
https://en.wikipedia.org/w/index.php?title=Schwinger_model&oldid=993425224

